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Abstract 

Recent studies have uncovered that non-coding sequence variants may relate to Axenfeld-

Rieger syndrome (ARS), a rare developmental anomaly with genetic heterogeneity. However, 

how these genomic regions are functionally and structurally associated with ARS is still unclear. 

In this study, we performed genome-wide linkage analysis and whole-genome sequencing in a 

Chinese ARS family and identified a heterozygous deletion of about 570 kb (termed LOH-1) 

in the intergenic sequence between PITX2 and FAM241A. Knockout of LOH-1 homologous 

sequences caused ARS phenotypes in mice. RNA-seq and RT-qPCR revealed a significant 

reduction in Pitx2 gene expression in LOH-1-/- mice, while Foxc1 expression remained 

unchanged. ChIP-seq and bioinformatics analysis identified a potential enhancer region (LOH-

E1) within LOH-1. Deletion of LOH-E1 led to a significant downregulation of the PITX2 gene. 

Mechanistically, we found a sequence (hg38 chr4:111,399,594-111,399,691) which is on 

LOH-E1 could regulate PITX2 by binding to RAD21, a critical component of the cohesin 

complex. Knockdown of RAD21 resulted in reduced PITX2 expression. Collectively, our 

findings indicate that a potential enhancer sequence which is within LOH-1 may regulate 

PITX2 expression remotely through cohesin-mediated loop domains, leading to ARS when 

absent. 
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Introduction 

In recent years, with the development of sequencing technology, the rate of genetic diagnosis 

of Mendelian diseases has been substantially increased. However, the proportion of unsolved 

exomes was much higher than expected and a significant subset of disorders may relate to non-

coding regions of the genome (1). Although the functional relevance of most non-coding 

variants is not known, a number of diseases have been shown to be associated with non-coding 

variants (2). 

One example of such a Mendelian disorder is Axenfeld-Rieger syndrome (ARS), a rare 

developmental anomaly with an incidence of approximately 1:50,000-100,000 in newborns (3). 

The clinical manifestations of ARS include mainly ocular symptoms: the presence of posterior 

embryotoxon (manifested by a prominent, anteriorly displaced Schwalbe’s line near the 

posterior corneal limbus), iridocorneal adhesions, iris hypoplasia, corectopia and/or polycoria. 

Typically inherited in an autosomal dominant manner, two causative genes for ARS have been 

identified: PITX2 (paired-like homeodomain transcription factor) at 4q25 (4) and FOXC1 

(forkhead box c1) at 6p25 (5). Phillips et al. also linked ARS to 13q14 (RIEG2, MIM: 601499) 

(6), but so far no pathogenic gene has been clearly identified at this locus. Additionally, 

mutations in CYP1B1, PRDM5, COL4A1 and PAX6 have also been associated with ARS in a 

few reports (7-10). Currently, only 40% of ARS cases are linked to mutations in PITX2 and 

FOXC1, leaving a significant portion of ARS patients with an unknown genetic cause (3). 

Recent studies have suggested that non-coding sequence variants upstream of the PITX2 gene 

may be associated with disorders. For instance, Volkmann et al. identified a 7600 kb deletion 

at 106-108 kb upstream of the PITX2 gene in an ARS patient, which did not affect the integrity 

of the PITX2 gene (11). Aguirre et al. discovered an 80 bp segment near the SNP (rs2200733) 

of the upstream noncoding sequence of the PITX2 gene with enhancer activity and a topological 
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linkage between the PITX2c and ENPEP promoters (12). GWAS studies have also highlighted 

the SNP (rs6817105) upstream of the PITX2 gene as a significant locus associated with atrial 

fibrillation (13). However, the association between upstream non-coding sequences, PITX2 

expression and the development of genetic disorder remains to be fully elucidated. 

In this study, we identified a deletion LOH-1 in an intergenic sequence upstream of the PITX2 

gene that co-segregated with the disease phenotype in a Chinese ARS family. We also 

generated a mouse model with a knockout of the LOH-1 homologous sequence. These mice 

largely replicated the phenotype of ARS patients, with a notable downregulation in Pitx2 

expression. Subsequent functional experiments revealed that the potential enhancer region P2 

which is within LOH-1 may long-rangely regulate the expression of PITX2 through cohesin-

mediated loop domains, and causes ARS when it is lacking. 
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Results 

Clinical characteristics  

In this ARS family, household members underwent ocular examination (Figure 1A). Different 

degrees of corneal embryotoxon, iridocorneal adhesion, iris hypoplasia and iris corectopia were 

presented in fourteen eyes of all affected patients (Figure 1B-①, ③, ④). Iris polycoria was 

manifested in patient II:6, III:3, III:7 (Figure 1B-②). Glaucoma was found in patient II:5, II:6, 

II:8, III:3, III-5 but not obvious in patient III:6 and III:7 who were at the age of 8 and 12 

respectively at the time of examination. Teeth and umbilicus were examined by the physicians 

and no abnormalities were demonstrated in this family (Figure 1B- ⑤ , ⑥ ). And the 

electrocardiographic results in patient II:5 and II:6 did not suggest significant cardiac 

abnormalities such as atrial fibrillation. The clinical characteristics were summarized in Table 

S1. 

 

LOH-1 deletion in the intergenic sequence upstream of PITX2 gene co-segregated with 

ARS 

First, we considered the possibility that variants in the ARS known genes PITX2 and FOXC1 

might be responsible for the observed clinical manifestations. Exonic regions of PITX2 and 

FOXC1 were examined by Sanger sequencing in proband III:3 from the ARS family and no 

disease-related variant was found. Then, all collected samples underwent linkage analysis 

within the ARS family. Parametric multipoint linkage analysis of the ARS family revealed a 

highly linked locus of approximately 21.2 Mb on 4q22.1- q26, with a maximum logarithm of 
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odds (LOD) score of 3.258, surrounding the marker rs1354680 (Figure 1C and Table S2). 

Interestingly, this linkage region contained the known ARS pathogenic gene PITX2. 

Furthermore, one patient (II:6) was selected for whole genome sequencing (WGS). CNV 

analysis showed no large deletions/duplications in the PITX2 gene coding regions and intron 

regions, while a heterozygous deletion of about 570 kb was detected approximately 200 kb 

upstream of PITX2 (Figure S1A), situated between PITX2 and FAM241A (we named the 

deletion LOH-1). 

We used Integrative Genomics Viewer (IGV) software to visualize the WGS reads and to 

search for sequencing abundance anomalies near the ends of the region from 110,868,844 to 

111,438,844 on chromosome 4 (hg38). The sequence information of the reads at the sequencing 

abundance anomaly was obtained. The precise location of the LOH-1 deletion was inferred to 

be between 110,869,880 and 111,437,100 (Figure S1B). Sanger sequencing confirmed the 

putative LOH-1 location and revealed a complete co-segregation of LOH-1 with the ARS 

phenotype (Figure 1A, D). 

 

LOH-1 knockout mice had ARS phenotypes 

To investigate the relationship between LOH-1 deletion and ARS, we knocked out the 

homologous sequence of LOH-1 (mm10 chr3:128,507,082-128,912,082) in mice by 

CRISPR/Cas9-targeted strategy. Mendelian ratios analysis of heterozygous mating outcomes 

revealed a near 50% pre-birth lethality rate in LOH-1-/- (KO) mice, while LOH-1+/-(HET) mice 

appeared unaffected. Examination of pre-birth lethal LOH-1-/- embryos at E12.5 revealed the 

ventral body wall defect and evisceration (Figure S2A), which is consistent with previous 
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reports (14, 15). Observation of dorsal images of mice at 3 weeks old revealed that LOH-1-/- 

mice were reduced in size compared to wild-type (WT) mice, while LOH-1+/- mice did not 

exhibit obvious abnormality (Figure 2A). By examining the body weight of mice from 3 to 8 

weeks after birth, we found a marked weight reduction in LOH-1-/- mice compared to WT mice, 

with no difference observed in LOH-1+/- mice (Figure 2B). Slit lamp examination and anterior 

segment optical coherence tomography (AS-OCT) showed clear corneas and normal deep 

anterior chambers in both LOH-1+/- and WT mice. In contrast, LOH-1-/- mice exhibited 

opacified corneas and disappeared anterior chambers (Figure 2C). Histopathological findings 

confirmed normal corneas and angle structures in the WT and LOH-1+/- mice. Thickened 

corneas with disorganized epithelial and stromal cells, disappeared anterior chambers, and 

closed angle structures were detected in the LOH-1-/- mice (Figure 2D). By measuring the 

corneal thickness and corneal epithelial thickness with the histopathological slides of the mice, 

we identified a significant increase in whole corneal thickness but a decrease in corneal 

epithelial thickness in LOH-1-/- mice compared with WT, while LOH-1+/- mice showed no such 

changes (Figure 2E). Atomic force microscopy (AFM) showed increased corneal roughness in 

LOH-1-/- mice compared to WT mice (Figure S2B, C). However, Fundus retinal images and 

histopathologic results revealed no retinal abnormalities in LOH-1-/-, LOH-1+/- and WT mice 

(Figure S2D, E). 

 

LOH-1 deletion resulted in dramatically decreased expression of Pitx2 gene 

To further explore the molecular mechanism of LOH-1 knockout mice, we analyzed the 

transcriptional profiles of 8-week-old LOH-1-/- and WT mouse eyes using RNA sequencing 
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(RNA-seq) analysis. As shown in Figure 2F, 97 genes were down-regulated and 77 genes were 

up-regulated (Table S3). Among them, the expression of the ARS causative gene Pitx2 was 

significantly reduced. However, the expression levels of another causative gene Foxc1, and 

genes located on either sides of Pitx2 i.e. Enpep and Fam241a were not significantly changed. 

Quantitative PCR (RT-qPCR) analysis further corroborated these RNA-seq findings. The 

expression of the three isoforms of Pitx2, Pitx2a, Pitx2b and Pitx2c, showed marked reductions 

in the eyes of LOH-1-/- mice, with moderate differences observed in LOH-1+/- mice (Figure 

2G). In addition, we examined the expression of Pitx2 by RT-qPCR in the eye, heart, kidney, 

stomach, and skeletal muscle of WT and LOH-1-/- embryos at E18.5. The results revealed that 

Pitx2 was significantly decreased in these tissues of LOH-1-/- embryos (Figure S2F). These 

findings indicate that the homozygous knockout of LOH-1 in mice leads to a decrease in Pitx2 

gene expression. 

 

Identification of a potential enhancer region in LOH-1 

Given the aforementioned findings, we postulated the presence of cis-regulatory elements such 

as enhancers within LOH-1 that modulate the expression of Pitx2. To identify these elements 

in LOH-1, we analyzed the enhancer-associated histone modification (monomethylation at 

histone H3 lysine 4 (H3K4Me1) and acetylation of histone H3 at lysine 27 (H3K27Ac)) ChIP-

seq data of 15-week-old human embrynic sclera. Numerous prominent peaks of H3K4Me1 and 

H3K27Ac signals were observed within this region. (Figure 3A, Figure S4A,B, Table S4,5). 

Meanwhile, we investigated DNase I hypersensitivity in human embryonic eye, retina, and 

heart tissues, and assessed the H3K4Me1 in human embryonic heart. We also re-analyzed 
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datasets from the UCSC genome browser (16), sourced from the Encyclopedia of DNA 

Elements (ENCODE, the ENCODE Project Consortium) (17, 18), to evaluate the enrichment 

of H3K4Me1, trimethylation at histone H3 lysine 4 (H3K4Me3), H3K27Ac within the LOH-1 

locus across 7 cell lines. The 100 vertebrates Basewise Conservation by PhyloP and the public 

H3K27Ac ChIP-seq data (human retina and heart) from the Cistrome Data Browser (19, 20) 

were also used for reference. The results from the above data suggest that there may be multiple 

enhancer regions in LOH-1. 

Subsequently, we selected a potential enhancer region named LOH-E1 (hg38 

chr4:111,397,892-111,402,926) in LOH-1 which contains the specific epigenetic signals. The 

pronounced enrichment of H3K4Me1 and H3K27Ac signals in the LOH-E1 indicated potential 

enhancer activity (Figure 3B). We also examined the epigenetic signals of mouse homologous 

regions for LOH-1 and LOH-E1 by the UCSC genome browser from the ENCODE datasets 

(Figure S3A). The results supported our speculation.  

Additionally, according to the GeneHancer database (21), LOH-E1 appears to interact with the 

PITX2 gene (Figure S3B), suggesting that PITX2 could be a potential target gene for the LOH-

E1 enhancer region.  

 

Deletion of LOH-E1 significantly reduced PITX2 expression 

To investigate the action mechanism of the LOH-E1, we employed the CRISPR/Cas9 system 

to specifically knock out the LOH-E1 region in the human embryonic kidney cell line (HEK293) 

(Figure S5A). Sequencing confirmed the generation of homozygous LOH-E1 deletion clones 

(HEK293-KO). RT-qPCR analysis revealed that the expression of PITX2A and PITX2B was 
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strongly downregulated in the HEK293-KO group compared with the wild type cells. However, 

the expression of PITX2C remained unchanged (Figure 4B). Western blot also confirmed that 

the expression of PITX2B was downregulated in the HEK293-KO group (Figure 4C). 

 

Deletion of LOH-E1 suppressed cell proliferation 

Observations on LOH-E1 depleted cells showed no significant morphological changes (Figure 

4A). CCK-8 assay indicated a significant reduction in the proliferation rate of HEK293-KO 

group compared to wild-type cells (Figure 4D). Cell cycle analysis revealed a notable decrease 

in the G1 phase and an increase in the S phase for LOH-E1-/- cells compared to control cells 

(Figure 4E). In the scratch assay, 2-well culture slices produced uniform gaps in the confluent 

monolayer and wound healing was imaged at various time points (Figure S5B). The results 

showed a slower wound healing rate in the KO group compared to the control group (Figure 

S5C). In the apoptosis assay, early apoptosis was significantly higher in the HEK293-KO group 

compared to the control cells, with no significant changes in late apoptosis (Figure S5D).  

 

P2 which is on LOH-E1 could regulate PITX2 expression by binding to RAD21 

We sought to elucidate the molecular mechanism by which LOH-E1 specifically modulates 

PITX2 expression. Enhancers can recruit transcription factors (TFs) and coactivators to alter 

chromatin spatial structure and improve transcription of target genes. To identify potential TFs, 

we analyzed the LOH-E1 and PITX2 core promoter region that are bound to TFs, focusing on 

regions enriched in H3K4Me1, H3K4Me3 and H3K27Ac. This analysis was conducted using 

the UCSC genome browser which is sourced from ChIP-seq of the ENCODE datasets, 
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following the method of Deng et al. (22). Among the 340 TFs in the ENCODE dataset, we 

identified 12 TFs that are associated with LOH-E1 and overlapped with regions enriched in 

H3K4Me1 and H3K27Ac (Figure S6A). Meanwhile, 26 TFs were found to bind to the core 

promoter region of PITX2, overlapping with regions enriched in both H3K4Me3 and H3K27Ac 

(Figure S6B). The Veen diagram revealed two overlapping TFs, RAD21 and CREB1(Figure 

5A).  

To identify the specific TFs recruited by the LOH-E1 enhancer region, we first analyzed DNase 

I hypersensitivity (human embryonic eye, retina, and heart) and the H3K4Me1 data (HEK293 

and human heart) from the ENCODE dataset as well as the human eye- and heart-related single-

cell ATAC data from the CATlas database (23). This analysis identified two core regions within 

LOH-E1 with significant epigenetic signals (Figure S7), located at hg38 chr4:111,398,770-

111,400,269 (1500bp) and hg38 chr4:111,400,720-111,401,749 (1030bp), respectively. Based 

on these regions, we synthesized a double-stranded DNA probe labeled with biotin at the 5' 

end, which was purified by incubation with nuclear proteins from HEK293 cells for Liquid 

Chromatograph Mass Spectrometer (LC-MS) detection (Figure S8A). Among the results of the 

enriched differential proteins, we found that RAD21, which is a critical component of the 

cohesin complex, may be the main transcription cofactors affected by LOH-E1 (Figure 5B, 

Table S6).  

As LOH-E1 correlates with the expression of PITX2, to further investigate the relationship 

between RAD21 and PITX2, we performed a correlation analysis using GEPIA2 database (24). 

The results showed a positive correlation between these two genes in heart and muscle (Figure 

S8B), which are both gene-specific tissue in Genotype-Tissue Expression (GTEx) database 
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(25). We also visualized Hi-C (high-throughput chromosome conformation capture) and 

Virtual 4C (Circular chromosomal conformation capture) data in human Adrenal gland online 

in the 3D Genome Browser (26), and the results suggest a possible long-range interaction 

between LOH-E1 and PITX2 (Figure S8C, D). 

Considering the potential role of RAD21 in the LOH-E1 mediated regulation of PITX2, we 

hypothesized that downregulation of RAD21 would reduce the expression of the target gene 

PITX2. We designed small interfering RNA (siRNA) targeting RAD21 (Figure 5C). 

Subsequently, we selected RAD21_si2 and RAD21_si3 to detect the expression of target genes 

PITX2A, B, and C in HEK293 cells, and found that the mRNA expression of PITX2A, B, and 

C was significantly reduced (Figure 5D). 

A recent study suggests that RAD21 N-terminal tail binds DNA to guide it through the kleisin 

gate and finally entry into the cohesin ring (27). To scan the binding sequence of RAD21 in 

LOH-E1 core enhancer region, we used the TF binding site prediction function in 

AnimalTFDB 3.0 database (28, 29), and finally selected a 41bp sequence named JJ (hg38 

chr4:111,399,619-111,399,659) (Table S7). According to sequence comparison, two regions 

in JJ sequence can match the RAD21 motif (Figure 5E), so we hypothesized that RAD21 could 

bind to JJ sequence. In order to verify this speculation, we performed ChIP-qPCR on the JJ 

sequence-containing region P2 (hg38 chr4:111,399,594-111,399,691) and surrounding regions 

P1 (hg38 chr4:111,398,648-111,398,756) and P3 (hg38 chr4:111,400,348-111,400,409). After 

that, we found a stronger enrichment of RAD21 binding to the P2 compared to P1 and P3 in 

the HEK293 cell line, when the RAD21 antibody was compared to the control antibody 

immunoglobulinG (IgG) (Figure 5F). This evidence suggested a direct interaction between 
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RAD21 and P2.  
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Discussion 

In this study, we identified a heterozygous deletion LOH-1 in the upstream intergenic region 

of the PITX2 gene by genome-wide linkage analysis and whole-genome sequencing, which co-

segregates with ARS in a Chinese ARS family. Knockout of LOH-1 homologous sequence in 

mice revealed that LOH-1-/- mice developed ARS-associated phenotypes and that Pitx2 gene 

expression level was significantly decreased. These results suggest that deletion of non-coding 

intergenic sequence LOH-1 can induce ARS in both humans and mice. 

Several studies have previously highlighted the presence of functional elements in the 

intergenic non-coding sequences upstream of the PITX2 gene, which are linked to genetic 

diseases. However, the pathogenic mechanisms involved are still unclear. Combined with our 

genetic results, we hypothesized that intergenic sequences upstream of PITX2 should play a 

regulatory role in PITX2 gene expression. We then performed a series of bioinformatics 

analyses of epigenetic data in public databases, along with ChIP-seq to target a potential 

enhancer region LOH-E1 in LOH-1. In the HEK293 cell line, cell proliferation, cell cycle, 

apoptosis and migration were all affected by LOH-E1 deletion, and the expression levels of 

PITX2 were downregulated, verifying that LOH-E1 may be a candidate enhancer region that 

regulates PITX2 expression. We summarize the deletions for the 4q25 locus that have been 

reported and the deletions that we found (Figure S9). Among them ARS_Volkman, 

Aniridia_Ansari and ARS_Protas are explicitly shown to overlap with LOH-E1. Through data 

analysis by relevant experiments and public database, RAD21 emerged as a potential protein 

binding to P2 sequence which is on LOH-E1. As the core subunit of cohesin, RAD21 is the 

only physical linkage between the SMC1/SMC3 heterodimer and the STAG subunit, which 

regulates the binding or dissociation of cohesin from chromatin and is involved in regulating 

gene transcriptional expression (30, 31). And whether DNA loading is successful or results in 

loop extrusion might be determined by a conserved RAD21 N-terminal tail that guides the 
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DNA through the kleisin gate (27). The above evidence demonstrated that P2 which is on LOH-

E1 binds to RAD21 to regulate the expression of PITX2. 

However, we found that the expression of the three isoforms of PITX2 was not completely 

consistent in LOH-E1 knockout cells and LOH-1 knockout mice, as reflected in PITX2C.  

Among the three isoforms of Pitx2, the Pitx2a, b splice variants share the same promoter and 

are expressed bilaterally in some tissues, whereas Pitx2c is transcribed from a separate 

promoter and is expressed asymmetrically (32). We hypothesized that LOH-E1 may act only 

on the PITX2A, B promoter and not the PITX2C promoter. And LOH-E1 knockout mice will 

be constructed subsequently to further clarify the mechanism of LOH-E1 with Pitx2. 

Epigenetic data analysis further suggested that LOH-E1 might not be the only PITX2 enhancer 

within LOH-1, hinting at the existence of other enhancer active regions that warrant further 

exploration.  

PITX2 plays a crucial role early in embryonic development to regulate the left-right asymmetric 

development of internal organs such as the gut, heart, liver and stomach (e. g. gut rotation) (33). 

Human and mouse embryonic development have different requirements for the dose of 

PITX2/Pitx2, with human development being more sensitive to the appropriate dose of PITX2 

(11). This may explain the fact that LOH-1 heterozygous deletion causes ARS in humans. In 

previous studies, Pitx2 knockout homozygous mice would die prematurely due to various 

developmental defects, while heterozygous mice were usually described as normal (14, 15, 34, 

35). In our study, the LOH-1+/- (HET) mice exhibited diminished expression of Pitx2 compared 

to wild type, but were able to reproduce and survive normally and did not have a significant 

ARS phenotype. Moreover, the LOH-1-/- (KO) mice are not completely lethal, with about 50% 

surviving to adulthood. Surviving KO mice displayed pronounced reduced expression of Pitx2 
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and a distinct ARS phenotype. Therefore, the LOH-1 knockout mice present an ideal model for 

delving deeper into ARS mechanisms.  

In summary, our study unveiled an enhancer region P2 which is on LOH-1, regulating the 

expression of PITX2 by binding to RAD21, and elucidated its significance in ARS. In the 

absence of LOH-1, RAD21 fails to successfully guide DNA into the cohesin ring, leading to 

the pathogenicity of ARS. This work helps to improve the understanding of intergenic sequence 

variants, enhance the diagnosis of related genetic diseases, and offer potential avenues for the 

prevention and treatment of ARS. 
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Methods 

Sex as a biological variant. This study examined male and female mice and similar results 

were obtained for both sexes. 

 

Subjects and clinical examination. This study recruited seventeen individuals from a Chinese 

ARS family. Blood samples were collected from all seventeen family members and the gDNA 

was extracted from peripheral blood. 7 out of 9 patients underwent detailed clinical 

examinations in the Second Xiangya hospital to further confirm the clinical manifestations of 

ARS. The other two were not able to come to the hospital, including II:2 who was blind for 

years and hence refused to leave his hometown and IV:1 who was too young to cooperate with 

the examinations. In addition to 7 patients, 1 normal individual (III:4) also received clinical 

examination. The average age of eight individuals was 30.1, ranging from 8 to 49. And the 

gender ratio was 1:1 (4 male:4 female). All participants were checked in the Second Xiangya 

Hospital, Central South University by ophthalmologists for ocular manifestations and internal 

physicians for extra-ocular manifestations. Best-corrected visual acuity (BCVA) was 

determined using a logMAR chart and an auto refractometer (Topcon KR-800, Topcon Optical 

Company, Tokyo, Japan). Intraocular pressure was measured using a Goldmann applanation 

tonometer. Anterior segment and angles were checked with a slit lamp (Huvitz Slit Lamp HS-

5000, Coburn Technologies, Singapore) and a gonioscope (Suzhou Liuliu Vision Technology 

Co.). Fundus examination was performed with an ophthalmoscope.  

 

Genome-wide linkage analysis. Seventeen samples from the ARS family were genotyped 
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using Illumina iScan system (Illumina, USA) and Illumina HumanCytoSNP-12 V.2.1 

BeadChIP kit. The called Genotypes were quality controlled by Illumina GenomeStudio 

V2011.1, after excluding SNPs with low quality and check PC_error as well as PPC_error, a 

data file (ARS.dat), a pedigree file (ARS.ped) and a map file (ARS.map) were extracted. 

Genome-wide linkage disequilibrium of the ARS family was tested by merlin V.1.1.2 (36) 

under multiple-parameter analysis with model file settings (para.model) 

‘VERY_RARE_DISEASE 0 0,0.99,0.99 Dominant_Model’. The 'merlin' prompt was used to 

analyze autosomal linkage disequilibrium, while the 'minx' prompt was used for X-linked 

linkage disequilibrium analysis. 

 

Whole genome sequencing. The gDNA of ARS-II:6 was analysed through WGS. After passing 

the DNA quality check, the DNA was broken into fragments of 200~300bp using a Biorupter 

ultrasonic fragmenter. Then, after repairing the sticky ends, a phosphate group was added to 

the 5' end and A to the 3' end, and the splice sequence with index was added to both ends of 

the DNA fragment by TA ligation. Finally, the DNA library was amplified by PCR. The 

libraries were quantified using the Qubit instrument, the qualified libraries were placed into the 

cBot for bridge amplification, and the clusters were generated and sequenced using the Illumina 

Hiseq sequencing system. Next the reads were aligned to the human genome assembly 

GRCh38/hg38 using iSAAC-01.15.04.01 (37). Variants were called with Isaac Variant Caller 

v1.0.6 (37) and Control-freeC v9.1 (38) annotated using ANNOVAR (39). Integrative 

Genomics Viewer (40) was used to import WGS data in .bam format for visual analysis. 
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Primer design. All primers were designed using the online software Primer3 

(https://primer3.ut.ee/) based on the human GRCh38/hg38 or mouse GRCm38/mm10 

assemblies. The sequence information of all primers is listed in Table S8. PCR and Sanger 

sequencing were conducted in the seventeen samples from the ARS family to confirm the co-

segregation status of LOH-1 deletion. 

 

Mice. The LOH-1 knockout mice were generated by zygote injection of CRISPR/Cas9 mRNA 

and a pair of gRNAs. The mice were genotyped by PCR and the PCR products were confirmed 

by Sanger sequencing. Mice live in an environment with relatively stable temperature (typically 

22-24°C) and humidity (typically 70%), in both light and darkness for 12 hours, and were 

allowed to eat and drink freely. The genetic background of all mice used in this project was 

C56BL/6J. All animal experiments were complied with all relevant ethical regulations and 

were approved by the Committee for Experimental Animals at Central South University. 

 

Ophthalmic examination of mice. The ocular manifestations of the mice were examined using 

a slit lamp (Huvitz Slit Lamp HS-5000, Coburn Technologies, Singapore) and a gonioscope 

(Suzhou Liuliu Vision Technology Co.). Anterior segment and angles were checked using 

optical coherence tomography (OCT) (Visante OCT, Zeiss, Germany). Fundus retinal images 

were captured by a small animal retinal microscopic imaging system 

(Micron IV Retinal Imaging Microscope, Phoenix Research Labs, USA). Mice were 

anesthetized by intraperitoneal injection of a mixture with ketamine and xylazine prior to the 

testing. 
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H&E staining. Mouse eyeballs were fixed in 4% paraformaldehyde/PBS at 4°C overnight. 

Following dehydration in graded alcohol, the samples were embedded in paraffin and sectioned 

sagittally at 5 µm using a paraffin microtome (RM2235, Leica Biosystems, Germany). The 

sections were then dewaxed, rehydrated, and stained with hematoxylin and eosin using the 

H&E staining kit (Cat: ab245880, Abcam). The slices are digitally scanned and imported into 

CaseViewer 2.4 (3DHISTECH, Hungary) for processing. 

 

RNA-sequencing and data analysis. Total RNA was extracted from mouse eyes using TRIzol 

(Cat: AM9738, Invitrogen) depending on the manufacturer's instructions. RNA quality was 

assessed using the RNA Nano 6000 Assay kit on the Agilent 2100 bioanalyzer system (Agilent 

Technologies, CA, USA). The RNA-seq library was performed using the NEB Next Ultra RNA 

Library Prep Kit for Illumina (Cat: E7530, NEB). In short, mRNA was purified from total RNA 

by using Oligo (dT) magnetic beads. Fragmentation was conducted in First Strand Synthesis 

Reaction Buffer using divalent cations at high temperatures. First-strand cDNA was 

synthesized using fragmentation mRNA and random oligonucleotides primers in the M-MuLV 

Reverse Transcriptase System, followed by degradation of the RNA strand with RNaseH. 

Afterwards, the second strand cDNA was synthesized with DNA polymerase I and dNTPs. 

Library fragments were sorted and purified with the AMPure XP system (Beckman Coulter, 

Beverly, USA). After PCR amplification, the PCR products were purified again using AMPure 

XP beads to get the final library. After established, the library was initially quantified with a 

Qubit 2.0 Fluorometer, and then the insert size of the library was checked using an Agilent 
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2100 bioanalyzer. After the insert size meets expectations, the effective library concentration 

was accurately quantified by RT-qPCR (effective library concentration above 2nM). Libraries 

were qualified and sequenced by Illumina NovaSeq 6000. The sequencing data were filtered 

using SOAPnuke v1.5.2 (41), then paired-end clean reads were aligned to the reference genome 

with Hisat2 v2.0.5 (42). Differential expression analysis of two groups was carried out with the 

DESeq2 R package v1.20.0 (43). The resulting P-values were adjusted using the Benjamini 

and Hochberg’s method to control for false discovery rate. Padj<=0.05 and 

|log2(foldchange)| >= 1 were chosen as the threshold for significantly differential expression. 

The RNA-sequencing data reported in this paper have been deposited in the Genome Sequence 

Archive (44) in National Genomics Data Center (45), China National Center for 

Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences.  

 

RT-qPCR. The cDNA was synthesized with RevertAid First Strand cDNA Synthesis Kit (Cat: 

K1622, Thermo Fisher Scientific). RT-qPCR was performed using the Maxima SYBR Green 

qPCR Master Mix (Cat: K0251, Thermo Fisher Scientific) on CFX96 Real-Time PCR 

Detection System (Bio-Rad, USA). Beta-Actin (β-Actin) and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) were used as internal controls to normalize the mRNA levels of 

candidate genes. Data were imported into CFX manager 3.1 (Bio-Rad, USA) and then analyzed. 

 

Western blotting. Samples were lysed in 2×SDS lysis buffer. Proteins were separated by 10% 

SDS-PAGE and transferred to a PVDF membrane. The membranes were incubated with a 

primary antibody overnight at 4°C. The primary antibodies used were PITX2 antibody (Cat: 
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ab221142, Abcam) and α-tubulin antibody (Cat: 5335, CST). Membranes were incubated with 

HRP-conjugated secondary antibody. The proteins were visualized using the SuperSignal West 

Femto (Cat: 34096, Thermo Fisher Scientific). Band intensities were quantified by Quantity 

One (Bio-Rad, USA). 

 

Chromatin immunoprecipitation (ChIP). ChIP assays were conducted on HEK293 cells and 

sclera from human embryos at 15 weeks. The kit used for the experiment was SimpleChIP Plus 

Sonication Chromatin IP Kit (Cat: 56383, CST). The tissue samples were minced into 1-2 mm 

cubes with a clean scalpel, fixed in 16% formaldehyde (Cat: 12606, CST) and incubated for 10 

min at room temperature in order to crosslink the proteins to the DNA, then quenched in glycine 

solution on ice for 5 min. The tissue was resuspended in ChIP Sonication Cell Lysis Buffer, 

and the tissue suspension was transferred into a Dounce homogenizer using a cut pipet tip, and 

the tissue pieces were broken up using a tight fitting pestle (type A) until no large pieces of 

tissue were observed. Resuspend tissue suspension in ice-cold ChIP Sonication Nuclear Lysis 

Buffer and incubate on ice for 10 min. After transfer of tissue suspensions into Covaris 

microTUBEs for sonication using Covaris S2 (Covaris, USA), the chromatin was incubated 

with H3K4Me1 antibody (10 μl per reaction, Cat: 5326, CST), H3K27Ac antibody (5 μl per 

reaction, Cat: 8173, CST), RAD21 antibody (10 μl per reaction, Cat: ab217678, Abcam) or 

IgG for 4 h at 4°C with rotation. Immediately add Protein G Magnetic Beads to each IP reaction 

and incubate for 2 h at 4°C with rotation. The chromatin was eluted from the antibody/Protein 

G Magnetic Beads and gently vortexed at 65°C for 30 min (1200 rpm). Next, reverse cross-

links by adding 5M NaCl and Proteinase K, and incubate 2 h at 65°C. Finally, DNA was 



23 
 

purified with DNA purification spin columns. Immunoprecipitated and input DNA was tested 

to downstream assay using high throughput sequencing or qPCR. 

 

ChIP-seq data analysis. The ChIP-seq sequencing project was completed on the MGISEQ-T7 

sequencing platform, and PE libraries (~300bp) were constructed for sequencing. The raw data 

was filtered using fastp v0.23.0 (46) to obtain high quality sequencing clean data. The filtered 

clean reads were mapped to the Human Genome Overview GRCh38/hg38 assembly using 

bowtie2 v2.5.1 (47). MACS2 v2.2.7.1 (48) was used to call peaks using the broad peak settings, 

with input used as the control. 

 

Cell culture. HEK293 cells (Cat: CRL-1573, American Type Culture Collection) were cultured 

in Dulbecco's modified Eagle's medium (DMEM) (Cat: C11995500BT, Gibco) with 10% fetal 

bovine serum (FBS) (Cat: 10099141, Gibco) and 1% penicillin and streptomycin (Cat: 

15140122, Thermo Fisher Scientific). All cells were cultured at 37°C in a humidified incubator 

containing 5% CO2 and passaged every 3 days. 

 

LOH-E1 region knockout cell line construction. The target-specific sgRNAs were designed 

using CRISPOR (49), and then were inserted into the plasmid VB105n at the AscI and KpnI 

restriction site. The constructs were confirmed by Sanger sequencing. Plasmids were 

transfected into HEK293 cells by electroporator, and the parameter setting voltage is 1200V, 

pulse width is 10ms, the number of electric shock is 3 times. After 24 hours of transfection, the 

cells were selected with 600 μg/ml hygromycin for 3 days. Next, the surviving cells were 
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trypsinized and diluted to 96-well plates for monoclonal cell screening. Genomic DNA of 

different monoclonal cells was extracted, and the CRISPR/Cas9-edited sites were subjected to 

PCR amplification and Sanger sequencing to obtain monoclonal cell lines with knockdown of 

the target fragments. The sequence information of all sgRNAs is listed in Table S8. 

 

CCK8 cell proliferation assay. Cells were trypsinized and diluted to 96-well plates for cell 

proliferation assay. Using the Countess II automated cell counter (Cat: AMQAX1000, Thermo 

Fisher Scientific) to seed each well with 2000 cells. CCK-8 solution (Cat: A311-01, Vazyme) 

was then added to each well at 24, 48, 72 and 96 hours after seeding, and three replicate 

experiments for each time point. After incubation at 37 °C for 2 h, the absorbance values of 

individual wells at 450 nm were measured separately using the Synergy H4 multifunctional 

microplate detector (BioTek, USA). 

 

Cell cycle analysis. The Cell Cycle Analysis Kit (Cat: C1052, Beyotime) was used to perform 

cell cycle analysis depending on the manufacturer's instructions. Briefly, first carefully collect 

the cell culture fluid, set aside and treat the cells with trypsin, then add the previously collected 

cell culture fluid, blow down all the cells, centrifuge at 1000 × g for 5 minutes, and precipitate 

the cells. Carefully aspirate off the supernatant, add pre-chilled PBS to resuspend the cells, then 

add pre-chilled 70% ethanol, mix with gentle blowing, and fix for 24 hours at 4°C. Prepare 

fresh propidium iodide staining solution to resuspend the cell precipitate at 37°C for 30 minutes 

protected from light. Finally, the cell cycle assay was conducted on the DXP Athena Flow 

Cytometer (Cytek, USA), followed by analysis in FlowJo v10.  
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Cell apoptosis assay. Cell apoptosis was assessed using the Annexin V-FITC/PI Apoptosis 

Detection Kit (Cat: A211-01, Vazyme) depending on the manufacturer's instructions. Briefly, 

cells were treated via trypsinization without EDTA, centrifuge at 300 × g for 5 min at 4°C and 

discard supernatant. Cells were washed twice with pre-cooled PBS and centrifuged at 300 × g 

for 5 min at 4°C each time. Then add 1 × Binding Buffer and gently blow well to a single cell 

suspension. Finally, Annexin V-FITC and PI Staining Solution were added, gently blown well, 

incubated for 10 min at room temperature (20 ~ 25°C) avoiding light and then 1 × Binding 

Buffer was added and gently mixed. The stained samples were detected by the DXP Athena 

Flow Cytometer (Cytek, USA) within 1 h, followed by analysis in FlowJo v10.  

 

Wound healing capacity assay. The Culture-Insert 2 Well in µ-Dish 35 mm (Cat: 81176, Ibidi) 

was used for wound healing capacity test depending on the manufacturer's instructions. Briefly, 

cells were trypsinized and 70 µL of cell suspension was applied to each well of the Culture-

Insert 2 Well. After the cells had been cultured for 24 hours to develop an optically confluent 

monolayer, the Culture-Insert was removed to establish the wound gap. Wash the cell layer 

with PBS to remove cell debris and non-adherent cells. Next the cells were cultured with 2 ml 

serum-free medium. Wound gap photography was observed using Eclipse inverted microscope 

(Leica, Germany) at 0h, 3h, 6h, 12h, 24h, 48h and 72h. 

 

Cell nuclear protein extraction. Nuclear and Cytoplasmic Protein Extraction Kit (Cat: P0027, 

Beyotime) was employed to extract nuclear proteins depending on the manufacturer's 
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instructions. Briefly, cells were washed with PBS and then scraped off with a cell scraper. Cell 

Cytoplasmic Protein Extraction Reagent A was added to the cell precipitate then vigorously 

Vortexed at highest speed for 5 seconds to completely suspend and disperse the cell precipitate. 

After 15 min of ice bath, add Cell Cytoplasmic Protein Extraction Reagent B and centrifuge at 

maximum speed for 5 sec, then centrifuge at 4°C for 5 min at 16000 × g. Next, remove the 

supernatant, add the nucleoprotein extraction reagent and centrifuge at the highest speed after 

vigorous Vortex. Finally, immediately aspirate the supernatant into a pre-cooled plastic tube to 

obtain the nuclear protein extracted from the cells. 

 

DNA pulldown. The DNA sequence sense strand probes and antisense strand probes were 

generated by gene synthesis, and then biotin labels the 5' end of the sense strand probe and 

antisense strand probe to form a double-stranded DNA probe by annealing. Add DNA probes 

to cell nuclear protein and incubate overnight at room temperature (18~25°C). Afterwards, the 

mixture was incubated with streptomycin magnetic beads for 4 h in a shaker at room 

temperature, and the proteins were eluted after centrifugation for mass spectrometry 

identification. The sequence information of all DNA probes is listed in Table S8. 

 

Mass spectrometric identification and analysis. Proteins enriched by DNA Pulldown were 

subjected to SDS-PAGE gel electrophoresis. The entire stacking gel was rinsed with water for 

several times and the bands of interest were excised and cut into cubes (～1×1 mm). Next, the 

digested peptides were extracted from the gel pieces and lyophilized for the following step. 

The sample was analyzed by on-line nanospray LC-MS/MS on Q Exactive HF mass 
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spectrometer (Thermo Fisher Scientific, MA, USA) coupled to an EASY-nanoLC 1000system 

(Thermo Fisher Scientific, MA, USA). Tandem mass spectra were processed by PEAKS Studio 

version 10.6 (Bioinformatics Solutions Inc., Waterloo, Canada). PEAKS DB was set up to 

search the database of uniprot-homo sapiens (version201907, 20428 entries) assuming trypsin 

as the digestion enzyme. The peptides with -10lgP≥20 and the proteins with -10lgP≥20 and 

containing at least 1 unique peptide were filtered. 

 

siRNA. siRNAs targeting RAD21 were designed using siCatch and purchased from RiboBio 

(RiboBio, Guangzhou, China). Cells were seeded in 6-well plates 1 day in advance to reach 

60-70% confluence. The siRNA against RAD21 and the control siRNA were then transfected 

with Lipofectamine 3000 reagent (Cat: 2399133, Thermo Fisher Scientific) on the following 

day according to the manufacturer's instructions. After incubation for 48h, cells were harvested 

for RNA extraction. The sequence information of all siRNAs is listed in Table S8. 

 

ENCODE data. The DNase-seq data from the ENCODE database used in this study included 

ENCSR820ICX, ENCSR474GZQ, ENCSR621ENC, ENCSR127PWK, ENCSR782XFY, 

ENCSR154ZNQ, ENCSR000CNV and ENCSR409LVQ. The ChIP-seq data from the 

ENCODE database used in this study included ENCSR676ZKW, ENCSR000FCG, 

ENCSR000CDL and ENCSR000CDK. 

 

Statistical analysis. All experiments were conducted in at least three independent replicates. 

Significances were assessed by Student’s t test (parametric), one-way or two-way analysis of 

variance (ANOVA). All data are represented as mean ± SEM and p-value < 0.05 was 
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considered to indicate a statistically significant difference. *p<0.05, **p<0.01, ***p<0.001, 

****P<0.0001, ns, not significant. 

 

Study approval. This study was approved by the Institutional Review Board (IRB) of the 

School of Life Sciences, Central South University (IRB #2022-2-22). All study participants 

had thoroughly read and signed the informed consent form before blood samples were collected 

for further analysis, and that the record of informed consent has been retained. 

 

Data availability. Values for all data points in graphs are reported in the Supporting Data 

Values file. The RNA-seq data have been deposited in the Genome Sequence Archive (GSA: 

CRA011549). 
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Figure 1. Clinical features and genetic studies of the Axenfeld-Rieger syndrome (ARS) 

family. (A) Pedigree of an ARS family. The arrow in the pedigree indicates the proband. “□” 

and “○” symbols represent normal male and female subjects, “■” and “●” elements stand for 

male and female patients, respectively. Samples selected for whole genome sequencing (WGS) 

were marked with ‘*’. ‘+’ stands for wild-type allele and ‘-’ refers to LOH-1 deletion allele. (B) 

Clinical manifestations of patients III:3, III:6 and III:7 from the ARS family. ①. An anterior 

segment photograph of the right eye (III:3) shows posterior embryotoxon (arrow) at the 

temporal corneal limbus and corectopia towards the temporal side. ②. Pseudopolycoria and 

atrophic iris in the left eye (III:3). ③. Gonioscopic photographs demonstrating iridocorneal 

attachment (arrow) and corectopia in the left eye (III:6). ④. Extensions of the peripheral iris 

to Schwalbe’s line are seen on gonioscopy in the right eye (III:6). ⑤. Normal teeth are shown 

for affected individual III:7. ⑥. Normal umbilicus are shown for affected individual III:7. (C) 

Genome-wide multipoint linkage analysis of ARS family. (D) Sanger sequencing identifies the 

precise location of the LOH-1 deletion as hg38 chr4:110,869,880-111,437,100.  



34 
 

 

 

 

 

 

 

 



35 
 

Figure 2. Phenotypic Observations and Expression Alterations of ARS-Related Genes in 

LOH-1 Knockout Mice. (A) Size of male LOH-1-/-(KO), LOH-1+/-(HET) and wild-type (WT) 

mice at 3 weeks of age. The scale bar represents 1 cm. (B) Body weight of male (left) and 

female (right) KO mice was compared to HET and WT mice from 3 to 8 weeks of age. n=23 

for each group. Statistic data were analyzed using two-way ANOVA. (C) Slit lamp and optical 

coherence tomography examinations of the eyes from different groups showed normal anterior 

segment structure in WT and HET groups, while opacified cornea and disappeared anterior 

chamber was seen in the KO group. (D) HE staining and histopathologic findings demonstrated 

normal eyeball structures, wide angles and regularly arranged corneal layers in WT and HET 

groups. However, a disorganized anterior segment, closed angle as well as thick corneal 

stromal layer were seen in the KO group. Scale bars represent 500μm in eye, 100μm in anterior 

chamber angle and 20μm in cornea, respectively. (E)The whole corneal thickness and corneal 

epithelial thickness were compared among the groups. n=3 for each group. Statistic data were 

analyzed using one-way ANOVA. (F) Volcano plot displaying the differentially expressed 

genes (DEGs) (KO VS WT) with 97 downregulated genes and 77 upregulated genes 

(|log2(FoldChange)| >= 1 and padj<= 0.05). Among them, the expression of Pitx2 was 

significantly reduced. However, the expression levels of Foxc1, Enpep and Fam241a were not 

significantly changed. (G) RT-qPCR detection of relative Pitx2a, Pitx2b and Pitx2c mRNA 

expression in the WT, HET and KO mice. n=3 for each group. Statistic data were analyzed 

using one-way ANOVA. All data are represented as mean ± SEM. *p<0.05, **p<0.01, 

***p<0.001, ****P<0.0001, ns, not significant. 
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Figure 3. Identification of the enhancer LOH-E1 within LOH-1 region. (A) Overview of 

the DNase-seq of retina, eye and heart, the H3K4Me1 ChIP-seq of heart, the H3K4Me1, 

H3K4Me3 and H3K27Ac marks on 7 cell lines, the 100 vertebrates Basewise Conservation, 

the H3K27Ac ChIP-seq of heart and retina in LOH-1 region of human supported from the 

UCSC genome browser. H3K4Me1 and H3K27Ac ChIP-seq results from human embryonic 

15 weeks sclera are indicated by the red box. LOH-1 is indicated by the green rectangle. PITX2 

gene is shown to be downstream of the LOH-1. (B) Determination of the LOH-E1 enhancer 

location based on markers of DNase I, H3K4Me1 and H3K27Ac. LOH-E1 is indicated by the 

yellow rectangle. H3K4Me1 and H3K27Ac ChIP-seq results from human embryonic 15 weeks 

sclera are indicated by the red box.  
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Figure 4. CRISPR/Cas9-mediated deletion of LOH-E1 in HEK293 cells. (A) The typical 

morphology of the HEK293-NC (negative control) and HEK293-KO (deletion of LOH-E1) 

under 10×, 20× or 40× magnification, respectively. Scale bars represent 500μm in 10×, 250μm 

in 20× and 125μm in 40×. (B) RT-qPCR detection of relative PITX2A, PITX2B and PITX2C 

mRNA expression levels in the HEK293-NC and HEK293-KO cells. n=3 for each group. 

Statistic data were analyzed using two-tailed Student’s T-test. (C) Western blot analysis of 

PITX2B in HEK293-KO cells and the control. And relative protein quantification of grey scale 

value for PITX2B and α-tubulin. n=3 for each group. Statistic data were analyzed using two-

tailed Student’s T-test. (D) CCK-8 assay in HEK293-KO cells and the control. n=3 for each 

group. Statistic data were analyzed using two-way ANOVA. (E) Cell cycle analysis of 

HEK293-KO cells and the control. n=3 for each group. Statistic data were analyzed using two-

way ANOVA. All data are represented as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, 

****P<0.0001, ns, not significant. 
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Figure 5. P2 which is within LOH-E1 could bind RAD21 to regulate the expression of 

PITX2. (A) Veen diagram presents transcription factors that bind to both the LOH-E1 

enhancer region and the PITX2 core promoter region. (B) Peptide Spectrum Match (PSM) of 

peptide from RAD21 protein by Liquid Chromatograph Mass Spectrometer (LC-MS) in the 

DNA pulldown. (C) RT-qPCR detection of RAD21 expression following its downregulation 

in HEK293 cells through siRNAs. For detection of RAD21 expression level, RAD21_small 

interfering RNA (RAD21_si)2 or RAD21_si3 compared to small interfering RNA negative 

control (siNC), respectively. n=3 for each group. Statistic data were analyzed using one-way 

ANOVA. (D) RT-qPCR detection of PITX2A, PITX2B and PITX2C expressions after the 

downregulation of RAD21 in HEK293 cells through RAD21_si2 and RAD21_si3. n=3 for 

each group. Statistic data were analyzed using one-way ANOVA. (E) Identification of the 

potential RAD21 binding sequence within the LOH-E1 region. And the position of the red 

line can match the RAD21 motif. (F) ChIP-qPCR assay for the binding of RAD21 to the P2 

and surrounding regions. qPCR detection for the enrichment of the P1, P2 and P3 regions 

within LOH-E1 upon anti-RAD21 ChIP and IgG in the HEK293 cell line. P1 and P3 are the 

upstream and downstream random regions of P2. JJ is indicated by the red rectangle. n=3 for 

each group. All data are represented as mean ± SEM.  
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